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Abstract. In order to understand the properties of Mott insulators with strong ground state orbital fluctu-
ations, we study the zero temperature properties of the SU(4) spin-orbital model on a square lattice. Exact
diagonalizations of finite clusters suggest that the ground state is disordered with a singlet-multiplet gap
and possibly low-lying SU(4) singlets in the gap. An interpretation in terms of plaquette SU(4) singlets
is proposed. The implications for LiNiO2 are discussed.
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Orbital degeneracy is a very common feature of Mott in-
sulators. In most cases it is lifted by a cooperative Jahn-
Teller distortion at relatively high temperature, and the
low energy physics can be described by a pure spin model,
with an effective Hamiltonian, hence a magnetic order,
that depends on the orbital ordering [1]. In the past few
years, this picture has been challenged in a number of sys-
tems, and the possibility to get a spin liquid is now well
established [2–4]. But it seems that there are even more
exotic systems that do not undergo a cooperative Jahn-
Teller distortion in spite of the orbital degeneracy. The
best example is probably LiNiO2, in which no orbital or
magnetic order has been detected down to very low tem-
perature [5]. The minimal model to describe this system is
the SU(4) spin-orbital model defined by the Hamiltonian

H = J
∑
〈i,j〉

(
2si · sj +

1
2

)(
2τ i · τ j +

1
2

)
(1)

on the triangular lattice. In this model, si are spin-1/2
operators that describe the spin degrees of freedom of
Ni3+, while τ i are pseudo-spin-1/2 operators that describe
the orbital degeneracy associated to the two eg orbitals.
While additional terms arising from the anisotropy in hop-
ping integrals and the Hund’s rule coupling will destroy
the symmetry between spin and pseudo-spin and favour
parallel alignment of the spins of a pair of neighbour-
ing sites, the absence of ordering may be traced back to
the properties of the Hamiltonian (1). As suggested by
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Li et al. [6], the ground state is a liquid of resonant pla-
quette SU(4) singlets. Note that this model is not equiv-
alent to the model of reference [4]. Although both models
possess SU(4) symmetry, the low-energy physics is com-
pletely different. Hamiltonian (1) in 1-dimension (1D) has
been solved by Bethe Ansatz [7,8], by numerical meth-
ods [9–12] and field theory methods [13], and the ground
state is a spin-orbital liquid. In 2D, the proposed plaquette
ground state of model (1) was mainly based on variational
wavefunction or mean field theory [6], and more work is
clearly needed to put these ideas on a firm ground.

In this article, we present a detailed analysis of the low-
energy properties of the SU(4) model on the square lattice
using symmetry analysis and exact diagonalizations of fi-
nite clusters. While the most relevant compound LiNiO2

is a quasi-two-dimensional system made out of triangular
planes, we shall start with the square lattice for simplicity.
We will discuss possible differences between the triangu-
lar and the square lattices at the end. The choice of exact
diagonalization as a numerical method was motivated by
the fact that other methods that have been successfully
used in the 1D case cannot be applied here. In particular,
the Quantum Monte Carlo algorithm used by Frischmuth
et al. [11] suffers from a severe minus sign problem in 2D
lattices.

Let us start with some symmetry considerations that
will be very useful throughout the paper. First of all, the
SU(4) symmetry implies that sz =

∑
i s
z
i , τ

z =
∑
i τ
z
i

and sτz =
∑
i s
z
i τ
z
i are good quantum numbers, and all

numerical results have been obtained by diagonalizing
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the Hamiltonian in sectors defined by a given set
(sz, τz , sτz). Besides, the first Casimir operator, the equiv-
alent of the square of the total spin in SU(2), is given for
N sites by C1...N = (1/32)(Atot)2, where the components
of Atot are the fifteen generators of the SU(4) algebra
and are given by 2

∑N
i=1 s

α
i , 2

∑N
i=1 τ

α
i and 4

∑N
i=1 s

α
i τ

β
i ,

α, β = x, y, z. Since the Casimir operator of any irre-
ducible representation (IR) can be easily calculated with
the tools of group theory [14], this operator is useful to
find out to which IR a given state belongs. The values of
C for various IR’s, classified according to their dimension-
ality d, are listed in Table 1. The Hamiltonian can also be
written in terms of on site fifteen-component vectors as

H =
J

4

∑
〈i,j〉

(Ai ·Aj + 1). (2)

This allows to rewrite the Hamiltonian of several small
systems in terms of the Casimir operators of sub-systems
using identities such as Ai · Aj = (1/2)(32Cij − A2

i −
A2
j). In this case, all eigenvalues and degeneracies can be

deduced from the possible IR’s for each sub-system. As
we shall see below, this allows a full diagonalization for
systems with 2 and 4 sites, as well as for 8 sites with
periodic boundary conditions where the the dimension of
the Hilbert space is already 65 536.

Table 1. Dimension (d) and Casimir operator eigenvalue (C)
of some irreducible representations of SU(4).

d 1 4 6 10 15 20 20 20 35 45

C 0 15/32 5/8 9/8 1 3/2 39/32 63/32 3 2

Let us now present the results we have obtained for
several systems. Since the interpretation we will give at the
end of the paper heavily relies on the properties of the 2
and 4 sites clusters, we include them here for convenience.

(i) Two sites (pair): in terms of spins and orbitals, the
ground state is 6-fold degenerate (spin singlet × orbital
triplet and vice versa) with energy−J . The other 10 states
are degenerate with energy +J . In SU(4) language, this
means that the only accessible IR’s have dimension 6 and
10. So it is impossible to build an SU(4) singlet with only
two sites, as already emphasized by Li et al. [6].

(ii) Four sites (plaquette): the Hamiltonian can be
rewritten as

H = 4J(C1234 − C13 − C24 + 1/4). (3)

The ground state is an SU(4) singlet with the pairs (13)
and (24) in the IR of dimension 6, and its energy is −4J .
It minimizes the energy per bond and is thus a very stable
object. The first excited state is 50-fold degenerate with
energy −2J . This corresponds to twice the adjoint IR of
dimension 15 with the pairs (13) and (24) in the IR’s of
dimension 6 and 10 (resp. 10 and 6) and to one the IR’s of
dimension 20 with both (13) and (24) in the IR of dimen-
sion 10. Several pictures of the ground state, all useful for

some purpose, can be given. The first one is the fermionic
representation of reference [6] and corresponds to the lin-
ear combination of all possible configurations with all 4
sites different, the relative coefficients being the sign of
the permutation. One can also write this wavefunction
as an antisymmetric combination of spin SU(2) singlets
along the horizontal bonds times orbital SU(2) singlets
along the vertical bonds minus the bond exchanged state
(see Fig. 1).

(2 )
3

Fig. 1. The SU(4) singlet on a four site cluster in terms of
spin (solid) and orbital (dotted) SU(2) singlets.

Finally, if one considers the 4-site cluster as two cou-
pled pairs, the ground state can be written in terms of
pair ground state only. Since the ground state minimizes
the energy of each bond, this means that the energy of
the bonds that couple the pairs is completely recovered
by lifting the degeneracy of the ground state manifold of
two independent pairs. This is another way to understand
why the plaquettes play such a special role.
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Fig. 2. Embedding of the 8-site cluster in the square lattice,
and equivalent connectivity to a cube with diagonals.

(iii) Eight sites: the eight-site cluster with periodic
boundary conditions has the topology of a cube with di-
agonals (see Fig. 2). This allows one to write the Hamil-
tonian as

H = 4J(C1...8 − C1368 − C2457 + 1). (4)

The ground state is a four-fold degenerate SU(4) singlet
of energy −8J with the sets (1368) and (2457) in the IR
of dimension 20 which is realized twice for 4 sites [6] and
has a Casimir equal to 3/2. The first excited singlet has
energy −4J and is highly degenerate. It is above the first
multiplet (−6J), so that there are exactly 4 singlets below
the first multiplet.

(iv) Sixteen sites: for that cluster, the only way to get
the spectrum is to perform exact diagonalizations. With 4
degrees of freedom per-site, the numerical task is roughly
equivalent to 32 sites for spin 1/2, and using the current
facilities, this is the largest cluster we could do. To re-
duce the size of the Hilbert space, we used the 3 SU(4)
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quantum numbers as well as spatial symmetries. The re-
sults are given in Figures 3b and 4. The ground state is a
non-degenerate singlet of energy −17.351J . The first ex-
citations are singlets. There are three singlet excitations
below the first multiplet. The dispersion of the singlets
shows a clear minimum at the X-point, i.e. k = (0, π) and
(π, 0).

Let us now discuss these results. The first striking fea-
ture is that some basic quantities have a very small size
dependence between 8 and 16 sites [15]. For instance,
the ground-state energy per site is −J for 8 sites and
−1.084425J for 16 sites. More interestingly, the singlet-
multiplet gap is equal to 2J for 8 sites and 1.999809J for
16 sites (see Fig. 3). This is a clear evidence that there
is a very short correlation length in the system. Besides,
although we have results for only two different-size sys-
tems, the fact that the singlet-multiplet gap is almost a
constant within 10−4 strongly suggests that it will remain
finite in the thermodynamic limit. This suggests that the
ground state does not have long-range order, and we must
be dealing with some kind of spin-orbital liquid.
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Fig. 3. Distribution of the low-lying states in the singlet vs.
multiplet representations of SU(4) on the 8-site cluster (a) and
on the 16-site cluster (b). The degeneracy is indicated for the
low-lying singlets.

To characterize this spin-orbital liquid, we have ana-
lyzed in more details the singlet sector. Let us start with
the 8-site cluster. The ground state energy is twice the
energy of a 4-site plaquette. This suggests that the pla-
quette picture of Li et al. [6] should be a very good start-
ing point. In an 8-site cluster, there are 18 plaquette cov-
erings, which generate a Hilbert space of dimension 14.
This is identical to the dimension of the singlet subspace
as we checked by diagonalizing the total Casimir opera-
tor. So the ground-state must be a linear combination of
the plaquette coverings. Note that a single plaquette cov-
ering is not a ground state of the Hamiltonian: using the
fermionic representation of the plaquette ground state, one
can easily check that the mean value of the Hamiltonian
in a plaquette covering is only −6J , quite far from the
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Fig. 4. Dispersion of low-lying states of the N = 16 SU(4)
spin-orbital model on a square lattice, through the 6 non-
equivalent points of the first Brillouin zone. Circles stand for
SU(4) singlet states, and crosses for SU(4) multiplets.

ground-state energy −8J . So the energy gained through
the resonance between plaquette coverings is crucial to get
−J per site in the ground state. In other words, the exact
ground state of the eight-site cluster is a resonant plaque-
tte state, a generalization of the resonant-valence bond
studied in the context of high temperature superconduc-
tivity. For the 16-site cluster, this picture turns out to
remain very accurate. In that case, there are 30 plaquette
coverings, which is much smaller than the dimension of
the total singlet subspace (24 024). To check whether this
subspace provides a good variationnal basis for the ground
state, we have numerically calculated the projection of the
ground state on an orthonormalized basis of this resonant
plaquette subspace, and we find that the weight of the
ground-state in that subspace is 93.5% of the total weight.
In view of the small relative size of this resonant plaquette
subspace, this number is quite impressive.

(b)(a)
Fig. 5. Two different kinds of plaquette coverings on the
square lattice: (a) a symmetric square lattice of plaquettes;
(b) a column (shifted) covering.

Another argument in favour of this resonant plaque-
tte description is provided by the dispersion of the 16-site
cluster. First of all, we note that 30% of the weight is actu-
ally carried by the 4 symmetric plaquette coverings. They
correspond to the plaquette covering of Figure 5a, and the
three coverings deduced by translation. Now the natural
singlet excitations from such a state consist of shifting
either rows or columns of plaquettes (see Fig. 5b). Note
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however that it is impossible to do both simultaneously.
So we expect to find quasi-1D low-lying singlet excitations
along (0, π) and (π, 0). This is precisely the case for the
16-site cluster shown in our numerical calculations, with a
clear local minimum at the X-point for singlet excitations.

Since we have good evidence that a singlet-multiplet
gap will remain in the thermodynamic limit, it is natural
to ask whether singlet excitations will remain within this
gap in the thermodynamic limit, as for instance in the case
of the SU(2) antiferromagnet on the Kagomé lattice [16].
While we cannot decide whether some singlets will remain
within the gap, it is quite unlikely that they will form a
continuum, like for the Kagomé lattice: the number of low-
lying singlets does not increase from 8 to 16 sites – it is
equal to 4 in both cases – and they are shifted to higher
energy on going form 8 to 16 sites. This result might be ex-
plained by a simple counting argument. Because of the im-
possibility to shift simultaneously rows and columns, the
number of plaquette coverings of the square lattice does
not increase exponentially with the size of the system, but
with the square root of the size. So we do not expect to be
able to build a continuum with a number of states that re-
mains significant in the thermodynamic limit. This should
be contrasted to the Kagomé case, where a simple count-
ing argument could reproduce the exponential increase of
the number of low-lying singlets [17]. In that respect, the
SU(4) model on the triangular lattice might be different.
In that case, it is possible to generate new plaquette cover-
ings by local modifications (see Fig. 6), and the number of
plaquette coverings increases exponentially with the num-
ber of sites. So, if plaquette coverings provide the lowest
singlet states for the triangular lattice, a continuum of
low-lying SU(4) singlets might be present in the singlet-
multiplet gap. This would be consistent with the specific
heat data of LiNiO2, where no gap was observed [5].

Fig. 6. Two plaquette coverings of the triangular lattice ob-
tained by local permutation of three plaquettes.

Finally, let us comment on the physical properties of
Mott insulators that can be described by a 2D spin-orbital
model in the vicinity of the SU(4) symmetry. The cor-
relation length appears to be so short, and the singlet-
multiplet gap so large, that small perturbations will not
close the gap. So in the absence of coupling to other de-
grees of freedom the system is expected to remain disor-
dered with a gap to magnetic excitations. Besides, the
cooperative Jahn-Teller mechanism that lifts the or-
bital degeneracy will also have to overcome this singlet-

multiplet gap since the SU(4) singlet ground-state of a
plaquette explicitly requires two orbital degrees of freedom
(see Fig. 1). As a consequence, the orbitals will not order
unless the electron-phonon coupling is strong enough. This
picture is consistent with the properties reported so far for
LiNiO2 [5]. As we noticed above, the structure of the sin-
glet sector might be different for the triangular lattice,
however. The analysis of this model is under progress.
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